(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
null(nil) → true
null(add(n, x)) → false
tail(add(n, x)) → x
tail(nil) → nil
head(add(n, x)) → n
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(x) → shuff(x, nil)
shuff(x, y) → if(null(x), x, y, app(y, add(head(x), nil)))
if(true, x, y, z) → y
if(false, x, y, z) → shuff(reverse(tail(x)), z)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
app(add(n, x), y) →+ add(n, app(x, y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [x / add(n, x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)